Central Neurotransmission	
by the end of this lecture you should be able to • predict the consequences of giving drugs which interact with CNS neurotransmission	

8yr old farm Collie
 dosed with pour-on ivermectin 2 d ago
• ataxia
• blind
tremors
 hypersalivation (may have vomited)
 generally depressed

definitions	
 neurotransmitter acts rapidly, briefly & at short range 	
 neuromodulator act more slowly and further away responsible for most synaptic plasticity 	
 not always from neurones 	

glutamate]
 energy metabolism excitotoxicity 	

neurotransmitters
orv
mate
ory
A
10
holamines
either
osine / ATP

GABA / glycine receptors	
• GABA	
glycine	
 postsynaptic chloride channels 	
• GABA _B	
 presynaptic, G protein coupled 	
glycine / NMDA	
- on NMDA receptor	
 glutamate (nematodes) 	

GABA / glycine receptors
• GABA
• glycine
 postsynaptic chloride channels GABA_B
- presynaptic, G protein coupled
- on NMDA receptor
 glutamate (nematodes)

|--|

noradrenaline	
 mostly postsynaptic α2 	
 mostly inhibitory alertness, pain, blood pressure 	
alertitess, pain, blood pressure	

imidazolines • I1 - blood pressure • I2 - depression?? MAO	
• I3 – insulin release	

dopamine - currently 5 receptors - D2 - reward pathway - pituitary hormone release - nigrostriatal pathway - vomiting	
---	--

5HT receptors in brain
• 5HT _{1A} - mood / emotion, pain?
 5HT_{1C} - CSF secretion, motor function 5HT_{4D} - motor function
• 5HT ₂ - stereotypy, mood / emotion,
hallucinations 5HT₃ - anxiety, emesis, pain?
• + 9 other subtypes!

reuptake inhibitors	
human antidepressants used to alter animal behaviour	

other fast transmitters • acetylcholine	
 - nAChR, mAChR histamine - H1, H2, H3 adenosine, ATP, AMP 	

purinergic receptors]
adenosine	
- A1 and A2 R - G protein coupled	
Presynaptic inhibition ATP	
 P2x (ionotropic) P2y (metabotropic) 	
 co-transmission in periphery, nociception 	

neuromodulators	
excitatory – substance P	
– neurokinins A & B – cholecystokinin – nitric oxide, carbon monoxide	
– arachidonic acid / prostaglandins – etc, etc	

neuromodulators	
 inhibitory encephalins, morphine - μ, δ R 	
- some dynorphins - κ R - cannabinoids - CB1, CB2 R - magnesium?	
- zinc??	

adaptive processes			
 cfos, cjun growth factors 			

8yr old farm Collie	
 dosed with pour-on ivermectin 2 d ago ataxia 	
 blind tremors 	
 hypersalivation (may have vomited) generally depressed 	

central neurotransmitters
 glutamate is the main excitatory transmitter
• glutamate acts at AMPA (fast), NMDA (medium) and mGlu (slow)
 GABA is the main inhibitory transmitter, acting at GABAA receptors
 neuromodulators act slowly to amplify or reduce transmission
• noradrenaline, acting a α_2 receptors, causes
CNS depression