Pharmacokinetics Elimination	
by the end of this lecture you should be able to • use your knowledge of drug elimination to formulate a treatment plan to ensure that sufficient drug is present in the target tissue for an adequate time	

elimination	
 mainly metabolites urine 	
– bile – lungs – secretions	

renal excretion • depends on - glomerular filtration - active excretion - reabsorption	

glomerular filtration	
20% of kidney blood flow most drugs filtered except	
- protein bound drugs	

active transport	
 carriers in proximal tubule for organic acids 	
 organic bases requires energy saturable 	
 drugs may compete for sites eg penicillin & probenecid 	

clearance

 the volume of plasma cleared of drug per unit time

|--|

biliary excretion	
 important for some drugs opioids 	
usually glucuronides may cause enterohepatic recirculation	

enterohepatic recirculation • conjugated drug excreted in bile • gut bacteria lop off conjugate	
 drug reabsorbed prolonged effects / animal recovers then effects reappear 	

secretions

• milk

- most lipid soluble drugs
- most not in high enough concentration to harm the young animal
 but high enough concentration to worry Fonterra / NZFSA
 How do you deal with this?

mathematical models to	
describe elimination of	

single compartment open model • drug distributes evenly in one compartment	
 volume of compartment is Vd plasma concentration falls as drug is cleared 	

half life	
 the time taken for the drug concentration to fall to / by half 	

elimination rate constant • the fraction of drug that would be eliminated per unit time – eg kel = 0.05 minutes-1 – 5% of drug eliminated / min	

elimination rate constant		
$t_{1/2} = \frac{\ln 2}{k_{el}}$		
$t_{1/2} = \frac{0.693}{1}$		

half life			
 after 1 half life 50% of drug has gone after 2 half lives 75% of drug has gone 			
• after 3.3 half lives 90% of drug has gone			
is unlikely to have any more effect			
 does not apply to drug residues!!! 			

repeated dosing
ster of the second seco
dosex2
dose x1

repeated dosing • steady state (Cp ss) effectively reached after 5 half lives	
anter 5 nan nves	

dosage • steady state reached when – drug in (dose) = drug out (clearance)			
dose) = drug out (clearance) $DSE = Cl_p C_{p SS}$			
Cl _p = V _d k _{el}			

oral dosage	
$\frac{\text{dose x F}}{\text{dose interval}} = \text{Cl}_{\text{p}} \text{C}_{\text{p av}}$	
uose intervar	

2 compartment open model	
drug in k ₁₂	
central peripheral compartment compartment	
k ₂₁	
drug out	

180	

therapeutic drug monitoring • measurement of plasma levels of drug	
and adjusting dose to achieve target plasma levels	

therapeutic drug monitoring	
why do it?	

herapeutic drug monitoring
when the drug has a low therapeutic index when the drug hasn't worked
when the drug's effect is difficult to monitor
when the drug's half life is likely to change
when the pharmacokinetics cannot be predicted
drug correctly

Who would you believe?	

Bivatop 200 - Gain withou Pain Response in Calves following injection of different oxys Bivatop 200 (S.C.) LA OTC	at Pain etracycline preparations (L.M.)	Doehning: Digitizer data on 0 Topenset Digitizer data on 0 Topenset Dis Preview N2 to Due to its unique polyethylene glycol base, Bivatop'200 is the only long-acting oxytetracyclin
The constraints and a sign activity provide only and the second	Hop 200, ensure (Mer)	eng-acting antibiotic cover, for a the discover of the second s
To ensure long-term clinical efficacy, it is important that over an acceptable treatment period. When you need longer-term maintenance of oxytetracy offers a <u>true</u> long-acting answer. Even at double-dosing AUC concentrations and longer activity provided by Bix	t an antibiotic provides cline levels as part of to short-acting competiti atop 200, ensure true b	i sufficient serum concentrations reatment, Bivatop*200 clearly tors are left standing. The higher one-acting antibiolic cover. for a

dministered •67 1999	
1	

	elimination
	 the plasma concentration of most drugs falls exponentially
	 half life is the time for drug concentration to fall by half
	 the drug is effectively gone after 5 half lives
	 with repeated doses a steady state is reached after 5 half
	lives
	 some drugs show a biexponential fall corresponding to distribution and elimination
L	