### **Pharmacokinetics**

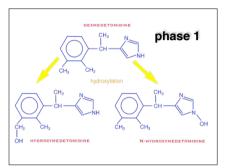
metabolism

## by the end of this lecture you should be able to

 use your knowledge of drug metabolism to modify your treatment plan in any species or class of animal



### pharmacokinetics


- · absorption
- distribution
- · metabolism = biotransformation
- · elimination

# metabolism · most species differences in drug effects can be attributed to differences in metabolism metabolism · most drugs are metabolised before elimination a few drugs are eliminated unchanged by the kidney, eg penicillin · metabolites are more easily eliminated metabolism · Phase 1 - reactive "handle" attached to molecule - some drugs bypass phase 1 Phase 2 water soluble group conjugated to "handle" phase 1 · oxidative reactions hydroxylation dealkylation

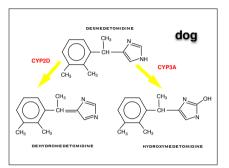
deaminationreductive reactionshydrolysis

### oxidation

- cytochrome P450 (microsomal mixed function oxidase)
- · mainly in SER of liver cells
- but also gut, lungs, kidneys, skin
- usually starts off with hydroxylation to produce a reactive intermediate



### enzyme induction


- some drugs increase the rate of production of P450 enzymes
- this increases the rate of metabolism of that drug and other drugs
- · phenobarbitone
- · alcohol
- · St John's wort
- some drugs reduce the effect of P450
- · ketoconazole
- · cimetidine
- · quinidine

### cytochrome P450

- · CYP1 3 used for drugs
- CYP4 12 used for endogenous compounds
- steroids
- fatty acids
- etc

### people

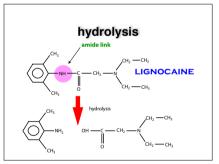
- · CYP3A4 55%
- · CYP2D6 25%
- · CYP2C9, 10, 19, 19 20%



### abnormal phenotypes

- people
- CYP2D6 common
- CYP2C19 less common
- some people have CYPs which turn harmless compounds into toxins / carcinogens
- · domestic animals
- -?????

### abnormal phenotypes

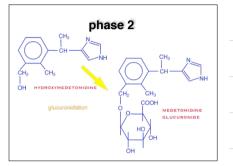

- · slow metabolism
- -unexpected side effects
- · fast metabolism
- drug does not work

### drug interactions

- · induction of P450
- phenobarbitone, rifampicin
- environmental toxins
- · inhibition of P450
- piperonyl butoxide
- grapefruit juice
- · competition for P450
- ketoconazole & many drugs

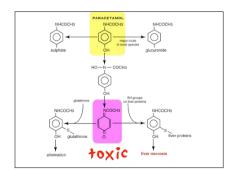
### phase 1

- · reductive reactions
- especially ketones, eg warfarin
- usually also in liver
- · hydrolysis
- -especially esters, eg suxamethonium, and also amides, eg lignocaine
- usually in plasma




### phase 2

- · conjugation with a polar group
- · mainly in hepatocytes
- · reduces reuptake in kidney
- · some excreted in bile
- bilirubin
- endogenous steroids


### conjugation

- · glucuronide not cats
- · sulphate not pigs
- · acetyl not cats & dogs
- · methyl
- · glycine
- · ornithine only birds



### prodrugs

- active drug inactive metabolite
   detomidine detomidine carboxylic acid
- inactive drug active metabolite
   cortisone hydrocortisone
   enalapril enalaprilat
- active drug active metabolite
   morphine morphine 6 glucuronide
- active drug toxic metabolite
   paracetamol epoxide
- · beware liver disease



### stereoisomers

- · many enzymes are stereospecific
- isomers may have different metabolic pathways
- · usually only one isomer active
- but others may be toxic, eg bupivacaine

### abnormal metabolism

- · newborn animals
- · old animals
- · liver disease
- or disease which reduces blood flow to liver
- · individual variation
- missing enzymes

### enterohepatic recirculation

- · conjugated drug excreted in bile
- · gut bacteria lop off conjugate
- -used for energy metabolism
- · drug reabsorbed
- · prolonged effects / animal recovers then effects reappear

# first pass metabolism portal circulation systemic circulation circulation liver target organ



### metabolism

- most drugs are metabolised by cytochrome P450 and conjugated with glucuronide in most species except cats
- some drugs will induce P450 to increase rates of metabolism
- $\boldsymbol{\cdot}$  prodrugs have to be metabolised to produce their action
- · liver disease usually slows metabolism